2967

NATURAL CONVECTIVE DIFFUSION TO A SPHERE
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The problem of natural convective diffusion to a sphere was solved both analytically for the
asymptotic case Gr. Sc — <0 and numerically for values of the product Gr.Sc from about 1 000 to
20 000. Evaluation of numerical results gave basic characteristics of the velocity profile and the
form of the diffusion layers. A formula for the total diffusion current to a sphere in the mentioned
range of the product Gr.Sc was obtained by combining the analytical solution with the numerical
results.

The problems of free convection play a significant role in various physico-chemical
and chemical engineering applications. They were solved hitherto especially for sy-
stems with a plane boundary, e.g., with a plate-shaped electrode® ~3+%:¢ and in the
case of axial symmetric systems mostly for heat transfer’ 12, The convective mass
transfer is characterized during forced convection*!3 and according to our results
also during free convection by the circumstance that the boundary diffusion layer
is by an order of magnitude thinner than the Prandtl boundary layer. For this reason,
it was necessary to use rather effective approximation methods during the numerical
solution.

THEORETICAL

Mathematical Formulation of the Boundary Value Problem

Spherical coordinates r, ¢, and $ are best suited for the mathematical description
of convective diffusion phenomena in the vicinity of a sphere. If we choose the z axis
perpendicular to the earth’s surface, then the sought components of the flow velocity,
v, and vy, and concentration ¢ are independent for symmetry reasons of the polar
angle ¢ and the velocity component v, = 0. The corresponding boundary value pro-
blem for stationary convective diffusion at zero concentration on the sphere surface
and non-zero concentration ¢, at infinity is then given by the following system of partial
differential equations:

v, Oc[or + r~'vy 8¢[09 = DAc, (1a)
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v, 0o, Jor + r™ 10y B0, J08 — r ') = —kg(c — ¢o) 0  cos & — o7 dplor +

+ W40, — 2r~%p, — 2r~%v5 cotg § — 2r72 0v,[09),

v, 0vg[0r + 1™ v Ovg[09 + r™ v, = kg(c — co) 0" sin 9 —

— (or)™" 3p[09 + V(Aws — 772 sin ~29v, + 2r™2 0v,[09)

v for + 2r~ o, + r™1 Qug[09 + rlvgcotg 3 = 0,

where
r

The boundary conditions are
oa, &) = 0,
dclod(r, 0) = 0,
v(a,9) =0,
ov,/03(r,0) = 0,
ve(a,9) =0,

dv5/09(r, 0) = 0,

Here D denotes diffusion coefficient, ¢ density of the solution, k = (dg/dc)

A4, = 0*[or* + 2r™1 §lor + r™2 0%[09% + r™2 cotg 9 009 .

lim ¢(r, 9) = ¢, > 0,

r—+oco

dc[o3(r, m) = 0,

limo(r, %) =0,

r—= o

ov,[o3(r, ™) = 0,

lim vy(r, 9) = 0,

r-ow

dvg[09(r, ) = 0.

(1b)

(Ze)
(1)

(2q)

(2b)

(2¢)

c=co?

g denotes acceleration of gravity, p pressure, v kinematic viscosity, a radius of the

sphere,

For the solution of the given problem, it is advantageous to introduce the stream

function

r

the dimensionless variables

y=( - aja,

and criteria

Gr = kgcoa’o™

v, = r~%sin 719 9y/[09,

vy = —r~'sin 7'8. dy/or,

(3)
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By eliminating the pressure p and rearranging, Eqs (1a—c) take the form

(1 + y)~2sin ~*9 Sc[(eC/oy) 0®[09 — (6C|09) 0¥ |oy] = &*Cloy* +
+2(1 + y)~taCloy + (1 + y)~26*Cla9* + (1 + y)~*cotg 3.0C[%,  (4a)

(1 + y)~%sin ~'9[(0Q,%/oy) 0P[08 — (0Q,P[09) 0'F[oy] + 2(1 + y)~2.
.sin"29. Q,%(cos 3. 0F[dy — (1 + y)~'sin9.0P[09) = Q,Q,F —

— Gr[(1 + y)sin®9.0Cdy + sin 9 cos 9. C[09] + keoo™*(M 0Clay +

+ N aC/a9), (4b)
where

Q, = 0oy + (1 + y)"20%*/09% — (1 + y)"*cotg §.9/09. (5a)
Eq. (1d) is identically fulfilled by the stream function defined by (3). The last term in
Eq. (4b) was formed from the terms containing the derivatives do/dr and Jo/03
by using the relations do/or = (0g/dc) dc[or = kcoa™* 0C[0y, 00]69 = (defoc) .
. 0¢[68 = keo 8C[09. Since the ratio of the terms keoo™!/Gr = v?g~'a™? occurring
on the right side of Eq. (4b) is in practical situations of the order of 10™* or smaller,

we neglect the terms with the multiplicative factor kcyo~'. Thus, we obtain instead
of Eq. (4b)

(1 + y)~2 sin~'9[(0Q,/ay) 0%/08 — (09, P/09) 0F[oy] +
+ 2(1 + y)~?sin 729, Q,P[(0P[oy) cos & — (6%[09) (1 + y) 'sin 9] =

= Q9% — Gr((1 + y)sin® 3. 0C[oy + sin 9 cos 3. 8C[09). (5b)

The boundary conditions for the Eqs (4a) and (5b) are

(0,9) =0, lim C(y, 8) = 1,
V-t
8Cla3(y,0) =0, aCloY(y,m) =0, (6a)
$0,9) =0,  Lm®y 9 =0,
y— o
#(5,0) =0, #(,7) = 0, (6b)

0%[oy(0,9) =0, limo¥P[oy(y,9) =0,

b dngo o

0%/69(y, 0) = 0, 0P)0%(y, m) = 0. (6¢)
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The conditions (6b, ¢) except for the limits follow from the corresponding conditions
(2b, ¢) and from the fact that the function ¥ is given by Eqs (3) regardless of an addi-
tive constant. The limit in (6b) follows from the physically plausible assumption that
the radial velocity component v, decreases to zero for r — oo faster than »~2; and

the limit in (6¢) analogously from the assumption that the tangential velocity com-

ponent vy diminishes faster than r~'.

Approximate Analytical Solution for Gr . Sc —

The functions € and ¥ can close to the sphere surface be expressed by series in powers
of y, where it is advantageous to separate the multiplicative factor Gr in the series
for ¥:

C(y,9) = ao(9) + a,(9 y + a)(9) y* + ..., (7a)
Gr19(y, 8) = Ao(8) + A\(9) ¥ + Ax(8) ¥ + Ay(9) ¥ + ... (7b)
The boundary conditions on the sphere surface give
ag(9) =0, Ay(3) =0, A(H=0.

The coefficient a,(9) has the meaning of the concentration gradient on the sphere
surface. We introduce a new variable # and functions C, ¥ by the relations

u=a/(9y, (8)
C(u, 9) = 6((1[1(9) u, ), ¥(u, 8) = ‘i’(afl(S) u, 9) ; (9)

As shown in the Appendix, the diffusion equation (4a) can be after substitution of
(8) approximated as

a, 0°Clou* + (2 — Sesin™! 9 0¥[09) dClou = 0. (10)

This equation can be considered as an ordinary differential one for the function C
with parameter 3. Its solution is obtained in an elementary way with regard to the
conditions (6a) in the form

C(u, 9) = J"’J exp [a{‘ '[ (Scsin™' 9 0¥/09 — 2) dt] dw, (11)

0 0
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where

J =j exp [a;‘f (Scsin™' 3 9¥[09 — 2) dt] dw . (12)

0 0

The formal solution (/1) contains unknown functions a, and ¢¥/29. From Egs (7a),
(8) and (/1) we obtain

éC/au(O, .9) =1=J!
hence

J=1. (13)

This equation serves to calculate a,(9). A differential equation for the function a, is
derived from it in the second part of the Appendix in the form

3a;'a;sin 8 — 2cos § = 120 Gr~'Sc™*H?%a}, (14)

where H = [§ exp (—x°) dx ~ 0-91817. Its solution is

Q2

ai(9) = 3 ¥/(Gr . Se)l4/(10H°) K(9) (19)

where

h(9) = sin? 9/2/ .[ sin®3 ¢ dz . (16)

9

Now it is possible to express the function C in (11) for the asymptotic case Gr . Sc —
— c0. We obtain in an analogous way as in rearranging the integral (12) (see Ap-
pendix)

H

Clu, 8) = A~ J uexp (—x°)dx. (17)

0

We used this asyrriptotic formula in calculating the starting iteration of C during
numerical solution of the given boundary problem.

The formula (75) for the concentration gradient on the sphere surface was derived
by solving Eq. (D7), which is an asymptotic approximation of (D6). If we express
the integral on the left side of Eq. (D6) with the use of the Taylor expansion for the
function exp (2w~ 'a; 'x) and introduce the parameter

g NGy, 88T (18)
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we obtain the following asymptotic expansion of the gradient a,(9)
ay(9) = n74a?(9) + a9 n + aP(9)n* + ...), (19)

where a{®(9) = 1h(9)[%/(10H®) ~ 0-31284h(8), as follows from the approximation
(15). The values of the angle function h and function a{* are given in Table I. The
analytical calculation of the coefficients a{"(9), a{*)(3), ... is very difficult, hence we
shall not deal with it. We use the expansion (19) with several terms as an empirical
formula in evaluating numerical results.

Numerical Solution

It is necessary to solve the boundary value problem (4a), (5b), (6a—c). At first, we
shall study the influence of the quadratic terms in (5b). We introduce a new function ¥

7= Gr? . (20)
The system (4a) and (5b) takes then the form

Gr Sc(1 + y)~2sin* 9[(6C/oy) 0P (69 — (5C|a9) 6@ [ay] = 6Cloy?* +

+ 21 + y)~taClay + (1 + y)~23*Cle9* + (1 + y) % cotg 9 0C[63,  (2Ia)

TABLE I
Values of functions # and a{®

9° S &%) §° h(S) a©(9)

10 0-27343 0-08554 100 1-09479 0-34249
20 0-43083 0-13478 110 1-13872 0-35623
30 0-55850 0-17472 120 117625 0-36797
40 0-66756 0-20884 130 1-:20764 0-37779
50 0-76273 0-23861 140 1-23310 0-38576
60 0-84657 0-26484 150 1-25277 0-39191
70 0-92073 0-28804 160 1:26674 0-39628
80 0-98632 0-30856 170 1-27510 0-39890
90 1-04414 0-32665 180 1-27789 0-39977
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Gr{(1 + y)"*sin™'9[(6Q,%/oy) 0¥[09 — (6Q,¥/29) 6¥|oy] +
+2Q,%(1 + y)~?sin~2 9[(0®/dy) cos § — (6P/09) sin (1 + y)™']} =

=Q0% — [(1+ y)sin® 3 6C[ay + sin 3 cos § 6C[a9] . (21b)

If we choose Gr . Sc = n~* = const., then it follows from Eq. (21b) that the quadra-
tic terms in it are negligible for sufficiently small Gr values. To gain some idea about
their influence, we solved the system (21a, b) in the finite region (0, b) x (0, n) by the
finite difference method; these calculations were repeated after omitting the quadra-
tic terms in Eq. (27b). We chose in turn Gr = 1, 10, 100, 500, and b = 2, 2-4, 2-8 at
constant Gr . Sc = 10*. It is apparent from the numerical results that the quadratic
terms in Eq. (2! b) play no role at Gr < 100 within the limits of the computational
accuracy, hence we neglected them in further calculations. Thus, Eq. (21 b) is linearized
and the solution C, ¥ of the mentioned system will depend on a single parameter,
1, defined by Eq. (18). The stream function ¥ and the radial and tangential compo-
nents of the velocity derived from it will be directly proportional to the criterion Gr
at constant # as follows from Eq. (20).

For the numerical solution of the simplified system, it is advantageous to introduce
an auxiliary function &:

G = Grd, (22)

Thus, Eq. (5b) takes after neglecting the mentioned terms the form of a second-order
equation

Q2,9 = (1 + y)sin® 3 6C[oy + sin 9 cos § 0C[09 . (23)

To pass from the infinite region (0, %) x (0, 7) to a finite one, we introduce a new
variable z instead of y defined as z = y[(1 + y), i.e, y = z/(1 — z), and functions
.C, @, V¥ defined as

C(z, 9) = C(z/(1 — 2), 9), ¥(z,9) = &(z](1 - z), 9),
. P(z, 9) = P(z/(1 — 2), 9). (24)

Thus, the original region (0, ) x (0, m) is transformed to (0, 1) x (0, n) and the
system of equations (4a), (22), (23) to the following one for the functions C, @, ¥:

(1 — z)? 0°Cloz* + *C[09* + cotg 8 9C[03 —
— (1 — z)* Sc.sin™*! 9[(eC[oz) 0¥|09 — (8C[09) 6¥[oz] = O, (25a)
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(1 — 222,06 — (1 — z)sin? $ 6C/éz — sin  cos 3 6C[09 = 0, (25b)
(1-202Q¥—Gro =0, (25¢)

where

3]

z

Q, = (1 - z)* 2*[oz* + 0*/09* — 2(1 — z) 0/dz — cotg § 8/cS .
The boundary conditions (6a —c) take the form
C(0,9) =0, C(1,9) =1, aCla¥(z,0) = 6Clo%(z,n) =0, (26a)
?(0,9) = ¥(1,9) = ¥(z,0) = ¥(z,m) = 0, | ~ (26b)
2¥[02(0, 9) = 0¥[oz(1, 9) = 0¥[09(z, 0) = 6¥/09(z, ) = 0. (26¢)

The boundary value problem modified in this way was solved approximately by the method
of finite differences. The partial derivatives in (25a—c¢) were approximated by symmetrical rela-
tive differences with an order of accuracy of h?, where k denotes the grid spacing, and in the
boundary conditions (26a,c¢) by nonsymmetrical relative differences with the same order of ac-
curacy.

We shall denote: m number of divisions in the interval {0, 1), n number of divisions in the
interval {0, n), h, = m~ ! step of the variable z, hg = m/n step of the variable 9, (z;, %;) =
= (ih,, jhy) coordinates of a general grid point of the chosen network, Cii= C(z;, .9j) and ana-
logously @;; and ¥;;.

Further we denote Resc;;, Resf;;, Resp;; the values of the difference approximations of the
left sides of Eqs (25a—c) and (26a,¢) in a general grid point (z;, §;); Eq. (254) was moreover
divided by Sc in order that the numbers Resc;; be comparable with Resf;; and Resp;; with

regard to their order of magnitude.

The nonlinear system of difference equations for the vector of unknowns x = (Cij, (Dij, Wij)
formed by the mentioned discretization was solved by a modified gradient method according
to the iteration scheme

xEHD ool _ A Herad G, k=0,1,2 ... (27)
where

G = Y (Resci; + Resf + Respj)),

i

Ay 1s a suitably chosen parameter, H a suitably chosen diagonal matrix. When we chose the latter
equal to a unit matrix E (gradient method proper), it was necessary for the convergence to be
achieved to choose a very small value of 1, so that the convergence of the series (x“‘)) was very
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slow. We therefore chose the matrix

Fe

H= - (28)

£ iy
The constants r, 't bp modify in turn the parameter A, for the components of grad G corresponding
to the unknowns CU, @,;, ¥;;- The numbers r, rg, r, were estimated separately by solving the
difference system for r¢ = r, = 0 according to the scheme (27) and finding a suitable value of r,

and proceeding analogously to find »; and g . These three numbers were after a minor used to form
the matrix H, whereby the convergence of the sequence (x(k)) was considerably accelerated. This
can be seen from the used values of 4o = 1, r, = 6, ry =015, r, = 3.10" 5 as compared with

do=3.10" 3 corresponding to the choice of H = E,

It is known that the sequence of iterations in the gradient method converges at a suitable
choice of 1. The criterion of the convergence is the diminishing of the function G with increasing
k. We therefore checked the values of G after every iteration. To speed up the convergence,
we started from the initial value of 4, which we multiplied after every 25 iterations by a suitably
chosen factor of r; > 1 if the values of G decreased. As soon as they began to increase, we divided
in turn the obtained factor 4, by a factor of r, > r; after every iteration until the values of G
began again to decrease.

The most important physical quantity in our problem is the concentration and its gradient
on the sphere surface. Therefore, the following quantities were calculated in addition:

a5 = Max IC“‘“’ i

3

dgk) [Z(C(k+l) C(i_li())z:ll/l 3

The problem under study was solved numerically on an ICL 4—72 type computer. The grid
parameters were m = 20, n = 18. The input iteration for C was obtained from Eq. (/7), the
input values of @ and ¥ were set initially equal to zero and then their values were derived from
preliminary calculations by the relaxation method.

RESULTS AND DISCUSSION

The solution of the boundary value problem for stationary free convection as for-
mulated in the theoretical part gives the values of the functions ¥ and C. The first
one characterizes the hydrodynamic conditions in the vicinity of the sphere due to
the proceeding diffusion. The stationary state is the result of interaction of two
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counteracting effects, namely gravitation, which causes a motion of solution layers
of different concentration and hence of different density, and viscosity, which hinders
this motion. Since the concentration gradient is the proper reason of the motion,
it is obvious that the motion will be most pronounced near to the sphere surface while
it will extinguish with increasing distance from the sphere. Thus, the streaming
velocity will increase with distance from zero on the surface to a certain maximum
and then it will slowly decrease to zero, theoretically at an infinite distance. Tts mag-
nitude and direction will depend, in addition, at constant Gr and Sc values also
on the spherical angle 3. We shall assume that the z axis of the coordinate
system is perpendicular and oriented oppositely to the gravitational force and that
Gr > 0. This means that the solution density increases with increasing concentration,
hence the solution layer at the sphere surface is lighter than the more distant one,
so that a motion takes place in the upward direction. For values of 3 =~ =, i.e.,
under the sphere (with respect to the Earth), the streaming starts to form and is hence
relatively weak, whereas on the opposite side (above the sphere), for § & 0, it is
strongest.

To express this situation quantitatively, we introduce two dimensionless quanti-
ties analogous to the Reynolds criterion, characterizing the streaming in both radial
and tangential directions:

(Re), = av™'v,, (Re)y = av 'v,. (294, b)

Both these quantities depend on the coordinates r, 9, eventually y, 3, and can be
expressed by means of the stream function ¥(z, 9) as follows:

(Re), = (1 — z)*sin™' 9 0¥[09, (30a)
(Re)y = —(1 — 2)*sin™"' 9 0%/oz . (300)

Vectors with radial components (Re), and tangential components (Re), for the case
Gr = 1, Sc = 10* are shown in Fig. 1, representing in essence the velocity field
in the vicinity of the spliere and illustrating our qualitative considerations.

The absolute value of the velocity vector,
V= [(Re)? + (Re)z]*"* = av~(v? + v3)'/? (31)

as a function of the relative distance, y, from the sphere surface is shown in Fig. 2
for four different values of 9 and for Gr = 1, Sc = 10*. This figure also substantiates
our qualitative considerations and shows that the maximum velocity is attained in
a relatively small distance from the sphere surface, namely y &~ 0-2 at the mentioned
values of Gr and Sc, and this is only little dependent on the angle 9.
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Further we calculated the dependence of the character of streaming on the Schmidt
criterion Sc at constant Gr; the results are shown in Fig. 3, whence it is seen that the
dependence of Von y for 3 = 90° and Gr = 1 is for all four selected values of Sc
qualitatively the same: the position of the maximum does not change much but its
height diminishes appreciably with increasing Sc. This effect can be physically easily
explained. Increasing Sc means either increasing viscosity or smaller diffusion coeffi-
cient. This means in the first case a larger hindrance of motion, in the second a thinner
diffusion layer bringing about hindering by the sphere surface where the streaming
velocity is zero. The form of the differential equations (4a), (5b) suggests that both
these factors have the same effect, which can be determined from Fig. 3.

The dependence of the streaming on the value of Gr at constant product Gr . Sc
was discussed in the section Numerical Solution, where it was stated that the stream
function ¥ and hence the velocities derived from it are directly proportional to Gr up
to rather high values of Gr.

The second calculated function, the concentration C, enables to determine the
most important physical quantity, the diffusion flux to the sphere, which is directly

FiG. 1 F1G. 2
Velocity field in the vicinity of a sphere Diagrams of the function V (formula (31)).
1 ¥V for = 60° 2 V for $ = 90° 3 V for
9= 120°% 4 V for 8 = 150°
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proportional to the concentration gradient on the sphere surface. The obtained values
of this function in the grid points served to calculate approximate values of the con-
centration gradient on the sphere surface according to the difference formula

aC|oy(0, kh) ~ (12h,)™* (—25Cy; + 48C;; ~ 36C,, + 16Cs — 3Cy),  (32)

for k = 1,2, ... 18. Fig. 4 shows the theoretical diffusion layers, whose thickness 4
was calculated from the numerical results according to

™! = (aélay))':O .

The values of the gradient from Eq. (32) were used to calculate the total diffusion
flow to the sphere

Q = 4na*c,DK, (33)

where

K = %J (8C|0y)y=o sin §d9 . (34)
(o]

T S
y 10
Fi1G. 3 Fi1G. 4
Diagrams of the function ¥V (formula (31)) Diffusion layers. 1 Gr.Sc = 0; 2 Gr.S¢ = 64;
for $=190°. 1 ¥ for Sc = 6% 2V for 3 Gr.Sc = 8* 4 Gr.Sc= 12*

Sc =8% 3 V for Sc =10% 4 ¥V for Sc =124
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If we introduce an approximation for the gradient (6C/dy),=o = a,(9) according
to Eq. (19)

(0€Cloy)y=0 ~ n™'a®(9) + a{P(9) + a®(9) 7,

we obtain

K= % (r;“‘ J a{?(9) sin 9 d9 + J a$"(9) sin 9 d9 + nj a$?(9) sin 9 dS) =

0 0 0

=ln '+ 1 + L. (35)

The value of [, ~ 0-30812 was calculated by numerical integration based on the values
of a{?(9) given in Table I. The other constants I, and I, were determined by the least
squares method from the values of K for ™! = 6, 7, 8, 9, and 10. Thus, we obtained
an approximate formula for the whole diffusion flow

Q = 4na’c,D(0-3087~ ! + 0-568 + 8:525n). (36)

Table II summarizes the values, K,, calculated by numerical integration using
Eqs (34) and (32), and the values, K., calculated from Eq. (35) for different values
of 77 1. The deviations, in percent, given in the last column show that the approximate
formula (35) fits very well the values of K, and thus the diffusion flow Q. However,
it should be pointed out that the values of K, obtained from the numerical solution
may be subject to larger errors than the given deviations with respect to the complexity
of the system of difference equations under study.

TABLE II
Values of K, and K,

o K, K (K, — K,)/K, . 100
6 3-85912 3-837 —0-57
7 3-93651 3-942 0-14
8 4-09667 4-098 0-03
9 4-27028 4-287 0:39
10 451347 4:501 —0-28
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APPENDIX
Approximation of the Diffusion Equation

We start from Eq. (4a) and introduce the variable « and functions C and ¥ according to Eqs (8)
and (9). Thus, we obtain

(1 + ufa,)~2 sin™*8 a,Sc(0C[ou %[0 — 0C|09 9 |ou) = a? B>Clou? +
+ 2a,(1 + ufa,)™" 3CJou + (1 + uja,)™* cotg éz‘l(ﬁa’l/a1 aCJou + 0C|29) +
+ (1 + ufa,)"*[(ua}[a,)? 0*Clou* + u(a)[a,)* OC|ou + u(a}[a,) OC|ou +
+ 2uai/a, 3*C|ou 09 + 0°C[09?]. (bI1)
After introducing Eq. (8), the series (7a,5) take the form
Clu, 9) = u + a(9)[ai(9) u® + a5(9)/ad(9) u® + ..., (D2a)

Gr_lY’(u, 9) = A2(9)/af( )u + A. (9) (9) BN A4(9) (9) grERENRE (D2b)
Thus, we obtain
oClou = 1 +-2a2/afu + 3asfaiu’ + ...,

0*Clou* = 2a,[a’ + 6aslaiu + ...,
0C[0% = (ayfat) u® + (asfai) u® + .
02C[09* = (ay/a})” u + (asfal)” w® + .
0*Clou 09 = 2(a,/al) u + 3(as/ai) u* + .
Gr1 0%|ou = 24,/a%u + 3A5)au® + ...,
Gr=' 0¥[09 = (Ayfaly u® + (Asfad) v’ + ...

When we substitute these expan51ons into Eq (DI) and restrict them to the lowest powers of «,
we obtain

in"'9 a,Sc 0CJou 0P [09 = af 6*°C|ou* + 2a, 6C|ou

This simplification is justified because decisive changes of the sought functions C and ¥ occur
at the sphere surface, i.e., for small values of u. The simplified equation can be written as (10).
Calculation of the Function a,

Eq. (13), which serves to calculate the function a,, involves also the unknown function 8 ¥/29.
Therefore, we need some information about the coefficients 4,, 45, A, in the expansion (74).
When we substitute the expansions (7a,b) into Eq. (5b), we obtain by comparing the coefficients
of the linear terms the condition

41 A, — 4 cotg 945 + 445 — a,sin* $ =0,
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whence

Ay = (1/41) (ay sin® § + 44} cotg § — 443) . (D3)

Preliminary numerical results showed that the coefficients 4,, A3, eventually their derivatives
are at least by 2—3 orders of magnitude smaller than a,. Therefore, we can use the following
approximations:

Ay(8) =0, Ay(8) =0, AL9) = (1/41) sin? 9a,(9).
The expansion (D2b) then gives
0¥)09% = (Gr[4!) d[d(sin? Ja*(9)) u* + ....
After substituting into Eqs (/2) and (/3) we obtain the equation

J exp {ay’ J‘ [Gr. Sc(24sin 9)~ ' d/d9(sin? Ja; *(9)] 1* — 2] dt} dw = 1

[¢] 0

whence

j exp {a7' [Gr.Sc. 1207 a; *(2a, cos § — 3a;sin 9) w® — 2w]}dw=1. (D4)
0

If we denote

w® = Gr.Sc.120""a;*(3a] sin § — 2a, cos 9), (Ds)
then it follows from Eq. (D4) that @ > 0. After setting ww = x, Eq. (D4) takes the form

w_l'[ exp(—x° + 20 'a; 'x)dx = 1. (D6)
0

Since for large values of @ we have exp (2w~ 'aj !x) & 1, we obtain in the asymptotic case
Gr.Sc— oo the equation

Hlo = 1. (D7)

By combining Eqgs (D5) and (D7), we obtain the differential equation (/4) for the function a;.
If we introduce a new function f

f(8) = sin*? 3a; '(9),
we obtain from Eq. (/4) after some rearrangement
—f? df[d% = 40H>Gr~'Sc™ " sin®39 . (D8)
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Since a, (n) =+ 0, we have f(n) = 0. The solution of Eq. (D8) has therefore the form

£(9) = (160H3Gr™'Sc™* f sin®39 d9)'/+,
S

whence we obtain the formula (75).

bW -

(o= e |

13:
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