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The problem of natural convective diffusion to a sphere was solved both analytically for the 
asymptotic case Gr. Sc ----7 00 and numerically for values of the product Gr.Se from about 1 000 to 
20 000. Evaluation of numerical results gave basic characteristics of the velocity profile and the 
form of the diffusion layers. A formula for the total diffusion current to a sphere in the mentioned 
range of the product Gr.Se was obtained by combining the analytical solution with the numerical 
results. 

The problems of free convection playa significant role in various physico-chemical 
and chemical engineering applications. They were solved hitherto especially for sy­
stems with a plane boundary, e.g., with a plate-shaped electrode l

-
3

, s,6, and in the 
case of axial symmetric systems mostly for heat transfer 7 

- 12. The convective mass 
transfer is characterized during forced convection4

,13 and according to our results 
also during free convection by the circumstance that the boundary diffusion layer 
is by an order of magnitUde thinner than the Prandtl boundary layer. For this reason, 
it was necessary to use rather effective approximation methods during the numerical 
solution. 

THEORETICAL 

Mathematical Formulation of the Boundary Value Problem 

Spherical ' coordinates r, qJ, and [}. are best suited for the mathematical description 
of convective diffusion phenomena in the vicinity of a sphere. If we choose the z axis 
perpendicular to the earth's surface, then the sought components of the flow velocity, 
Vr and V~h and concentration c are independent for symmetry reasons of the polar 
angle qJ and the velocity component Vcp = O. The corresponding boundary value pro­
blem for stationary convective diffusion at zero concentration on the sphere surface 
and non-zero concentration Co at infinity is then given by the following system of partial 
differential equations: 

(la) 
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(lb) 

Vr ovs/or + r-1vs ovs/o8 + r- 1vrvs = kg( C - co) Q -1 sin 8 -

- (Qr)-l op/o8 + v(Arvs - r- 2 sin -28vS + 2r- 2 ovr/o8) , (lc) 

where 

The boundary conditions are 

c(a, 8) = 0, 

oc/o8(r, 0) = 0, 

vla, 8) = 0, 

ovr/o8(r, 0) = 0 , 

lim c(r, 8) = Co > 0, 
r-+oo 

oc/o8(r,1t) = 0, 

lim vlr, 8) = 0, 
r-+ 00 

ovr/o8(r,1t) = 0, 

r-+ 00 

(2a) 

(2b) 

(2c) 

Here D denotes diffusion c~efficient, Q density of the solution, k = (oQ/oc)c=co' 
9 denotes acceleration of gravity, p pres,sure, v kinematic viscosity, a radius of the 
sphere. 

For the solution of the given problem, it is advantageous to introduce the stream 
function l/I 

(3) 

the dimensionless variables 

y = (r - a;)/a , E = c/co, P=l/Ijva, 

and criteria 

Sc=v/D. 
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.By eliminating the pressure p and rearranging, Eqs (1a - c) take the form 

(1 + y)-2 sin -18 Sc[(aClay) aPla8 - (aE/a8) aPlay J = a2c/ay2 + 

+ 2(1 + y)-1 ac/ay + (1 + y)-2 a2C/a82 + (1 + y)-2 cotg 8. aC/a8, (4a) 

(1 + y)-2 sin -18[(aQyP/ay) aP/a8 - (aQyP/a8) aP/ayJ + 2(1 + Y)-2 . 

. sin- 28. QyP(cos 8. aP/ay - (1 + y)-1 sin 8. aP/a8) = QyQyP -

- Gr[(1 + y) sin28. ac/ay + sin 8 cos 8. aCla8J + kcoe-1(M aCjay + 

+ N aC/a8) , (4b) 
where 

Eq. (Jd) is identically fulfilled by the stream function defined by (3). The last term in 
Eq. (4b) was formed from the terms containing the derivatives ael/ar and aQja8 
by using the relations ae/ar = (ae/ac) ac/ar = kcoa-1 a'clay, ae/a8 == (aQ/oc) . 
. ac/a8 = kco aC/a8. Since the ratio of the terms kcoe-1/Gr = v2g- 1a- 3 occurring 
on the right side of Eq. (4b) is in practical situations of the order of 10-4 or smaller, 
we neglect the terms with the multiplicative factor kcoe -1. Thus, we obtain instead 
of Eq. (4b) 

(1 + y)-2 sin-1 8[(aQyP/ay) aP/a8 - (aQyP/a8) aP/ayJ + 

+ 2(1 + y)-2 sin -28. QyP[(aP/ay) cos 8 - (aP/a8) (1 + y)-1 sin 8J = 

= QyQyP - Gr((1 + y) sin2 8 . ac/ay + sin 8 cos 8 . aCla8) . (5b) 

The boundary conditions for the Eqs (4a) and (5b) are 

C(0,8) = 0, 

.aC/a8(y,0) = 0, 

P(0,8) = 0, 

P(y,O) = 0, 

aPjay(O ,8) = 0, 

aP/a8(y,0) = 0, 

lim C(y, 8) = 1 , 
y-> 00 

aCla8(y, n) = 0, 

lim P( y, 8) = 0 , 
y-+oo 

P(y, n) = 0, 

lim aP/ay(y, 8) = 0, 
y-> 00 

aP/a8(y, n) = o. 
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The conditions ( 6b, c) except for the limits follow from the corresponding conditions 
(2b, c) and from the fact that the function t/I is given by Eqs (3) regardless of an addi­
tive constant. The limit in (6b) follows from the physically plausible assumption that 
the radial velocity component Vr decreases to zero for r ~ 00 faster than r- 2

; and 
the limit in (6c) analogously from the assumption that the tangential velocity com­
ponent Vs diminishes faster than r - 1. 

Approximate Analytical Solution for Gr . Sc ~ 00 

The functions E and P can close to the sphere surface be expressed by series in power~ 
of y, where it is advantageous to separate the mult,iplicative factor Gr in the series 
for P: 

The boundary conditions on the sphere surface give 

The coefficient a 1(8) has the meaning of the concentration gradient on the sphere 
surface. We introduce a new variable u and functions C, P by the relations 

(8) 

C(u, 8) = E(a1
1(8) u, 8), P(u, 8) = P(a1

1(8) u, 8). (9) 

As shown in the Appendix, the diffusion equation (4a) can be after substitution of 
(8) approximated as 

(10) 

This equation can be considered as an ordinary differential one for the function C 
with parameter 8. Its solution is obtained in an elementary way with regard to the 
conditions (6a) in the form 
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where 

(12) 

The formal solution (11) contains unknown functions a1 and o'l'/afr From Eqs (7a), 
(8) and (11) we obtain 

oC/ou(O, 8) = 1 = J- 1 

hence 

J = 1. (13) 

This equation serves to calculate al (8). A differential equation for the function al is 
derived from it in the second part of the Appendix in the form 

(14) 

where H = f; exp ( - x 5
) dx ~ 0·91817. Its solution is 

(15) 

where 

h(9) = sin2
!3 911 {sinS

!3, d, . (16) 

No'; it is possible to express the function C in (11) for the asymptotic case Gr . Sc -+ 

-+ 00. We obtain in an analogous way as in rearranging the integral (12) (see Ap­
pendix) 

J
HU 

C(u,8) = H- l exp (_x 5
) dx. 

• 0 

(17) 

We used this asymptotic formula in calculating the starting iteration of C during 
numerical solution of the given boundary problem. 

The formula (15) for the concentrati~n gradient on the sphere surface was derived 
by solving Eq. (D7), which is an asymptotic approximation of (D6). If we express 
the integral on the left side of Eq. (D6) with the use of the Taylor expansion for the 
function exp (2w - 1 a; 1 x) and introduce the parameter 

11 = (Gr. SC)-1/4 , (18) 
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we obtain the following asymptotic expansion of the gradient a1(9) 

(19) 

where alO)(9) = -!h(9)/1(10HS
) ~ O'31284h(9), as follows from the approximation 

(15). The values of the angle function h and function ala) are given in Table I. The 
analytical calculation of the coefficients al1)(9), al2 )(9), ... is very difficult, hence we 
shall not deal with it. We use the expansion (19) with several terms as an empirical 
formula in evaluating numerical results. 

Numerical Solution 

It is necessary to solve the boundary value problem (4a), (5b), (6a-c). At first, we 
shall study the influence of the quadratic terms in (5b). We introduce a new function P 

P = GrP. (20) 

The system (4a) and (5b) takes then the. form 

Gr Sc(1 + y)-2 sin- 1 9[(aC/ay) aP;a9 - (aC/a9) aP/ay] = a2c/ay2 + 

+ 2(1 + y)-l ac/ay + (1 + y)-2 a2c/a92 + (1 + y)-2 cotg 9 ac/a9, (21a) 

TABLE I 

Values of functions h and a~O) 

/),0 h(9) alO)(9) /),0 h(9) a\0)(9) 

10 0·27343 0·08554 100 1'09479' 0·34249 
20 0·43083 0·13478 110 1·13872 0·35623 
30 0·55850 0·17472 120 1·17625 0·36797 
40 0·66756 0·20884 130 1'20764 0'37779 
50 0'76273 0·23861 140 1'23310 0·38576 
60 0·84657 0·26484 150 1·25277 0'39191 
70 0·92073 0·28804 160 1·26674 0'39628 
80 0·98632 0·30856 170 1·27510 0'39890 
90 1·04414 0'32665 180 1'27789 0'39977 
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Gr{(l + y)-2 sin- 19[(oQ/P/oy) oP/09 - (oQyP/09) oP/oyJ + 

+ 2QyP(1 + y)-2 sin- 2 9[(oP/oy) cos 9 - (oP/09) sin 9(1 + y)-lJ} = 

= QyQyP - [(1 + y) sin2 9 oC/oy + sin 9 cos 9 oC/09J . (21 b) 

If we choose Gr. Sc = 11- 4 = const., then it follows from Eq. (21b) that the quadra­
tic terms in it are negligible for sufficiently small Gr values. To gain some idea about 
their influence, we solved the system (21a, b) in the finite region (0, b) x (0, n) by the 
finite difference method; these calculations were repeated after omitting the quadra­
tic terms in Eq. (21b). We chose in turn Gr = 1, 10, 100,500, and b = 2,2'4,2'8 at 
constant Gr. Sc = 104

• It is apparent from the numerical results that the quadratic 
terms in Eq. (21b) play no role at Gr ~ 100 within the limits of the computational 
accuracy, hence we neglected them in further calculations. Thus, Eq. (21b) is linearized 
and the solution C, P of the mentioned system will depend on a single parameter, 
11, defined by Eq. (18). The stream function P and the radial and tangential compo­
nents of the velocity derived from it will be directly proportional to the criterion Gr 
at constant 11 as follows from Eq. (20). 

For the numerical solution of the simplified system, it is advantageous to introduce 
an auxiliary function $: 

(22) 

Thus, Eq. (5b) takes after n.eglecting the mentioned terms the form of a second-order 
equation 

Qy$ = (1 + y) sin2 9 oC/oy + sin 9- cos 9 oC/09 . (23) 

To pass from the infinite region (0, ex)) x (0, n) to a finite one, we introduce a new 
variable z instead of y defined as z = y/(l + y), i.e., y = z/(1 - z), and functions 

. C, iP, lJ' defined as 

C(z, 9) = C(z/(l - z), 9), iP(z, 9) = $(z/(l - z), 9) , 

lJ'(z, 9) = P(z/(l - z), 9) . (24) 

Thus, the original region (0, ex)) x (0, n) is transformed to (0, 1) x (0, n) and the 
system of equations (4a), (22), (23) ,to the following one for the functions C, iP, lJ': 

(1 - ZY 02C/OZ2 + 02C/092 + cotg 9 oC/09 -

- (1 - zY Sc. sin- 1 9[(oC/oz) 0lJ'/09 - (oC/09) olJ'jozJ = 0, (25a) 
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(1 - Z)2 Qz<P - (1 - z) sin2 9 oC/oz - sin 9 cos 9 OC/09 = ° , (25b) 

(25c) 

where 

The boundary conditions (6a - c) take the form 

C(O, 9) = 0, C(l, 9) = 1, oC!o9(z, 0) = oC/o9(z, 11:) = 0, (26a) 

p(o, 9) = P(l, 9) = P(z, 0) = P(z, 11:) = ° , (26b) 

oP/oz(0, 9) = oP/oz(l, 9) = oP/o9(z, 0) = oP/o9(z, 11:) = 0. (26c) 

The boundary value problem modified in this way was solved approximately by the !llethod 
of finite differences. The partial derivatives in (25a-c) were approximated by symmetrical rela­
tive differences with an order of accuracy of h2

, where h denotes the grid spacing, and in the 
boundary conditions (26a,c) by non symmetrical relative differences with the same order of ac­
curacy. 

We shall denote: m number of divisions in the interval <0, 1), n number of divisions in the 
interval <0,1t), hz = m- 1 step of the variable z, hfj = 1t/n step of the variable 9, (Zj' 9j) = 
= (ihz' jha) coordinates of a general grid point of the chosen network, Cjj = C(Zj' 9) and ana­
logously tP jj and 'Pjj • 

Further we denote Rescjj' Resfjj , ResPij the values of the difference approximations of the 
left sides of Eqs (25a-c) and (26a,c) in a general grid point (Zj' 9j); Eq. (25a) was moreover 
divided by Sc in order that the numbers Rescij be comparable with Resfjj and Respjj with 
regard to their order of magnitu4e. 

The nonlinear system of difference equation:; for the vector of unknowns x = (Cij' tP jj, 'Pij) 
formed by the mentioned discretization was solved by a modified gradient method according 
to the iteration scheme 

where 

X(k+l) X(k) - AkH grad G, k = 0, 1, 2, ... ' 

G = L (Resc~j + Resfj~ + Resp~j) , 
j ,j 

(27) 

Ak is a suitably chosen parameter, H a suitably chosen diagonal matrix. When we chose the latter 
eq~al to a unit matrix E. (gradient method proper), it was necessary for the convergence to be 
achieved to choose a very sm.all value of Ak so that the convergence of the series (x(k» was very 
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slow. We therefore chose the matrix 

H (28) 

The constants r c' rf, r p modify in turn the parameter Ak for the components of grad G corresponding 
to the unknowns Cjj , <l>jj, 'Pij' The numbers r c' rf, r p were estimated separately by solving the 
difference system for rf = r p = 0 according to the scheme (27) and finding a suitable value of r c~ 
and proceeding analogously to find rf and r p' These three numbers were after a minor used to form 
the matrix H, whereby the convergence of the sequence (x(k») was considerably accelerated. This. 
can be seen from the used values of AO = 1, r c = 6, rf = 0'15, r p = 3 . 10 - 5 as compared with 
AO = 3 . 10- 5 corresponding to the choice of H = f. . 

It is known that the sequence of iterations in the gradient method converges at a suitable 
choice of Ak' The criterion of the convergence is the diminishing of the function G with increasing 
k. We therefore checked the values of G after every iteration. To speed up the convergence, 
we started from the initial value of AO which we multiplied after every 25 iterations by a suitably 
chosen factor of rl > 1 if the values of G decreased. As soon as they began to increase, we divided 
in turn the obtained factor Ak by a factor of r2 > rl after every iteration until the values of G 
began again to decrease. 

The most important physical quantity in our problem is the concentration and its gradient 
on the sphere surface. Therefore, the following quantities were calculated in addition: 

d(lk) = MaxIC~~+1) - C~~)I 
IJ IJ ' 

j ,j 

d~k) = [L(C~f+l) - C~f)Yr /2. 
j ,j 

The problem under study was solved numerically on an ICL 4-72 type computer. The grid 
parameters were in = 20, n = 18. The input iteration for C was obtained from Eq. (17), the 
input values of <l> and .'P were set initially equal to zero and then their values were derived from 
preliminary calculations by the relaxation method. 

RESULTS AND DISCUSSION 

The solution of the boundary value problem for stationary free convection as for­
mulated in the theoretical part gives the values of the functions P and C. The first 
one characterizes the hydrodynamic conditions in the vicinity of the sphere due to 
the proceeding diffusion. The stationary state is the result of interaction of two 
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counteracting effects, namely gravitation, which causes a motion of solution layers 
of different concentration and hence of different density, and viscosity, which hinders 
this motion. Since the concentration gradient is the proper reason of the motion, 
it is obvious that the motion will be most pronounced near to the sphere surface while 
it will extinguish with increasing distance from the sphere. Thus, the streaming 
velocity will increase with distance from zero on the surface to a certain maximum 
and then it will slowly decrease to zero, theoretically at an infinite distance. Its mag­
nitude and direction will depend, in addition, at constant Gr and Sc values also 
on the spherical angle 8. We shall assume that the z axis of the coordinate 
system is perpendicular and oriented oppositely to the gravitational force and that 
Gr > O. This means that the solution density increases with increasing concentration', 
hence the solution layer at the sphere surface is lighter t~an the Jl1.ore distant one, 
so that a motion takes place in the upward direction. For values of 8 ~ 1t, i.e., 
under the sphere (with respect to the Earth), the streaming starts to form and is hence 
relatively weak, whereas on the opposite side (above the sphere), for 8 ~ 0, it is 
strongest. 

To express this situation quantitatively, we introduce two dimensionless quanti­
ties analogous to the Reynolds criterion, characterizing the streaming in both radial 
and tangential directions: 

(29a, b) 

Both these quantities depend on the coordinates r,8, eventually y, 8, and can be 
expressed by means of the stream function '1'( z, 8) as follows: 

(30a) 

(30b) 

Vectors with radial components (Re)r and tangential components (Re)s for the case 
Gr = 1, Sc = 104 are shown in Fig. 1, representing in essence the velocity field 
in the vicinity of the sphere and illustrating our qualitative considerations. 

The absolute value of the velocity vector, 

(31) 

as a function of the relative distance, y, from the sphere surface is shown in Fig. 2 
for four different values of 8 and for Gr = 1, Sc = 104

• This figure also substantiates 
our qualitative considerations and shows that the maximum velocity is attained in 
a ,relatively small distance from the sphere surface, namely y ~ 0·2 at the mentioned 
values of Gr and Sc, and this is only little dependent on the angle 8. 
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Further we calculated the dependence of the character of streaming on the Schmidt 
criterion Sc at constant Gr; the results are shown in Fig. 3, whence it is seen that the 
dependence of V on y for 8 = 90° and Gr = 1 is for all four selected values of Sc 
qualitatively the same: the position of the maximum does not change much but its 
height diminishes appreciably with increasing Sc. This effect can be physically easily 
explained. Increasing Sc means either increasing viscosity or smaller diffusion coeffi­
cient. This means in the first case a larger hindrance of motion, in the second a thinner 
diffusion layer bringing about hindering by the sphere surface where the streaming 
velocity is zero. The form of the differential equations (4a), (5 b) suggests that both 
these factors have the same effect, which can be determined from Fig. 3. 

The dependence of the streaming on the value of Gr at constant product Gr. Sc 
was discussed in the section Numerical Solution, where it was stated that the stream 
function P and hence the velocities derived from it are directly proportional to Gr up 
to rather high values of Gr. 

The second calculated function, the concentration C, enables to determine the 
most important physical quantity, the diffusion flux to the sphere, which is directly 

FIG. 1 

Velocity field in the vicinity of a sphere 
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Diagrams of the function V (formula (31». 
1 V for S = 60°; 2 V for 9 = 90°; 3 V for 
S = 120°; 4 V for S = 150° 
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proportional to the concentration gradient on the sphere surface. The obtained values 
of this function in the grid points served to calculate approximate values of the con­
centration gradient on the sphere surface according to the difference formula 

for k = ' 1, 2, ... 18. Fig. 4 shows the theoretical diffusion layers, whose thickness d 
was calculated from the numerical results according to 

d- 1 = (8C/8y)y=o . 

The values of the gradient from Eq. (32) were used to ~alculate t).1e total diffusion 
flow to the sphere 

where 

FIG. 3 

Diagrams of the function V (fo'rmula (31» 
for S = 90°. 1 V for Se = 64

; 2 V for 
Se = 84; 3 V for Se = 104; 4 V for Sc = 124 

(33) 

(34) 

I r r 
FIG. 4 

Diffusion layers. 1 Gr.Se = 0; 2 Gr.Se = 64 ; 

3 Gr.Se = 84; 4 Gr.Se = 124 
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If we introduce an approximation for the gradient (8Ej8y)y=0 = a 1(9) according 
to Eq. (19) 

we obtain 

(35) 

The value of 10 ~ 0·30812 was calculated by numerical integration based on the values 
of alO)(9) given in Table I. The other constants 11 and 12 were determined by the least 
squares method from the values of K for 1]-1 = 6, 7, 8, 9, and 10. Thus, we obtained 
an approximate formula for the whole diffusion flow 

(36) 

Table II summarizes the values, Km calculated by numerical integration using 
Eqs (34) and (32), and the values, K e, calculated from Eq. (35) for different values 
of 1]-1. The deviations, in percent, given in the last column show that the approximate 
formula (35) fits very well the values of Kn and thus the diffusion flow Q. However, 
it should be pointed out that the values of Kn obtained from the numerical solution 
may be subject to larger errors than the given deviations with respect to the complexity 
of the system of difference equations under study. 

TABLE II 

Values of Kn' and Ke . 

6 3·85912 
711 3·93651 
8 4·09667 
9 4·27028 

10 4,51347 

3·837 
3·942 
4·098 
4·287 
4'501 
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APPENDIX 

Approximation of the Diffusion Equation 

We start from Eq. (4a) and introduce the variable u and functions C and'!' according to Eqs (8) 
and (9). Thus, we obtain 

(1 + u/a1)-2 sin- 19 a1Sc(ae/au ap/a9- - ae/a9 ap/au) = ai a2e/au2 + 

+ 2a1(1 + u/a1)-1 ae/au + (1 + u/a1)-2 cotg 9(ua~/a1 aerau + aetaS) + 

+ (1 + u/a1)-2[(ua~/a1)2 a2e /au2 + u(a~/a1)2 ae/au + u(a~/a1)' ae/au + 

+ 2ua~/al a2e/au a9 + a2e/a92] . (Dl) 

After introducing Eq. (8), the series (7a,b) take the form 

e(u, 9) = u + a2(9)/ai(9) u2 + a3(9)faf(9) u3 + ... , (D2a) 

Gr- 1 P(u,9) = Az(9)/ai(9) u2 + Al9)/ai(9) u3 + A4(9)/a1(9) u4 + .... (D2b) 

Thus, we obtain 

ae/au = 1 +. 2a2/aiu + 3a3/aiu2 + ... , 

a2e/au2 
= 2a2/ai + 6a 3 /aiu + ... , 

ae/a9 = (a2/ai)' u2 + (a3/ai), u3 + ... , 

a2e/a92 
= (a2/ai)" u2 + (a3/ai)" u3 + ... , 

a2e/au a9 = 2(a2/aD' u + 3(a3/ai), u2 + ... , 

Gr- 1 ap/au = 2A2/aiu + 3A3/aiu 2 + ... , 

Gr- 1 ap/a9 = (A2/ai)' u2 + (A3/ai)' u3 + .... 

When we substitute these expansions into Eq. (Dl) and restrict them to the lowest powers of u, 
we obtain . 

sin -19 ~1SC ae/au ap/09= ai a2e/au2 + 2a1 ae/au . 

This simplification is justified because decisive changes of the sought functions C and '1' occur 
at the sphere surface, i.e., for small values of u. The simplified equation' can be written as (10). 

Calculation of the Function a1 

Eq. (13), which serves to calculate the function a1' involves also the unknown function 0'1'/09. 
Therefore, we need some information about the coefficients A 2 , A 3 , A4 in the expansion (7b). 
When we substitute the expansions (7a,b) into Eq. (5b), we obtain by comparing the coefficients 
of the linear terms the condition 

4! A4 - 4 cotg 9A~ + 4A~ - a1 sin2 9 = 0, 
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whence 

(D3) 

Preliminary numerical results showed that the coefficients A 2 , A 3 , eventually their derivatives 
are at least by 2-3 orders of magnitude smaller than al' Therefore, we can use the following 
approximations: 

The expansion (D2b) then gives 

After substituting into Eqs (12) and (13) we obtain the equation 

[exp {a;-' r[Gr. Sc(24 sin 9t' djd9[sin2 9a;-3(9)] t4 
- 2] dt} dw ~ 1 

whence 

f~ exp {a;-' [Gr. Sc . 120-'a;-4(2a, cos 9 - 3a; sin 9) w' - 2w]} dw ~ 1 . (D4) 

If we denote 

(D5) 

then it follows from Eq. (D4) that w > O. After setting ww = x, Eq. (D4) takes the form 

(D6) 

Si'nce for large values of w we have exp (2W-Ial1x) ~ 1, we obtain in the asymptotic case 
Gr.Se --+ 00 the equation 

Him = 1. (D7) 

By combining Eqs (D5) and (D7), we obtain the differential equation (14) for the function al' 

If we introduce a new function f ' 

we obtain from Eq. (14) after some rearrangement 

(D8) 
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Since al (n) ::j:: 0, we have fen) = O. The solution of Eq. (D8) has therefore the form 

whence we obtain the formula (15). 
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